Adaptive Sampling Under Low Noise Conditions

نویسنده

  • Nicolò Cesa-Bianchi
چکیده

We survey some recent results on efficient margin-based algorithms for adaptive sampling in binary classification tasks. Using the so-called Mammen-Tsybakov low noise condition to parametrize the distribution of covariates, and assuming linear label noise, we state bounds on the convergence rate of the adaptive sampler to the Bayes risk. These bounds show that, excluding logarithmic factors, the average risk converges to the Bayes risk at rate N , where N denotes the number of queried labels and α is the nonnegative exponent in the low noise condition. For all α > √ 3 − 1 this convergence rate is asymptotically faster than the rate N achieved by the fully supervised version of the base adaptive sampler, which queries all labels. Moreover, for α → ∞ (hard margin condition) the gap between the semiand fully-supervised rates becomes exponential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Low-power adaptive pseudo noise code acquisition for spread-spectrum systems

A novel pseudo noise code acquisition combined with the newly proposed adaptive sampling rate and threshold control (ASTC) algorithm is derived for low-power spread-spectrum systems with complementary metal–oxide–semiconductor implementations. Low-power performance can be achieved by reducing the sampling rate of the proposed system while maintaining the system performance. The sampling rate is...

متن کامل

A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition

Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...

متن کامل

Active Learning and Adaptive Sampling for Non-Parametric Inference

Active Learning and Adaptive Sampling for Non-Parametric Inference by Rui M. Castro This thesis presents a general discussion of active learning and adaptive sampling. In many practical scenarios it is possible to use information gleaned from previous observations to focus the sampling process, in the spirit of the ”twenty-questions” game. As more samples are collected one can learn how to impr...

متن کامل

On the effect of low-quality node observation on learning over incremental adaptive networks

In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009